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ABSTRACT: Flow behavior of polymer liquids filled with
short fibers (particulate fillers) was theoretically analyzed
from the point of view of the free volume theory. Assuming
that the filler addition changes the occupied volume, while
the temperature variations cause mainly the free volume
changes, a general expression describing the viscosity of the
system as a function of the filter content, temperature vari-
ations, and rheological properties of the pure polymer liquid
was derived. If the viscosity curve of the unfilled polymer is
described by the Carreau equation, the corresponding vis-
cosity curve of the filled polymer is also represented by an
equation of Carreau type. However, this equation has other
values of Newtonian viscosity and the power exponent in

comparison with the initial equation. Both parameters de-
pend on the filler content and temperature. The derived
equation predicts a viscosity rise and a stronger non-New-
tonian behavior of the system with increasing filler content.
The temperature rise exerts an opposite effect on the rheo-
logical behavior. The theoretical predictions are in good
accordance with viscosity measurements for low-density
polyethylene and polystyrene melts filled with short cotton,
flax, and hemp fibers. © 2005 Wiley Periodicals, Inc. J Appl
Polym Sci 97: 1401–1409, 2005
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INTRODUCTION

Modification of thermoplastic and thermoset poly-
mers by the addition of different organic and inor-
ganic fillers is a very abundant source of new poly-
meric materials with unique application properties
given the tremendous possibilities in choice of filler
and its content in the composition. The used fillers
differ in chemical and physical properties, size, shape,
and surface character, which in the first range influ-
ence the application and processing properties of the
composition. Organic and inorganic fiber fillers of nat-
ural and artificial origin constitute a significant group
of fillers applied for reinforcing and toughening of
both thermoplastic and thermoset polymers. Espe-
cially for thermoplastics, the application of short fibers
can significantly change the rheological and process-
ing properties of the system in comparison with the
virgin polymer. In the scientific literature many pa-
pers devoted to studies on rheological properties of
thermoplastic polymers filled with fibers were pub-
lished. They contain, for instance, polyethylene and
polypropylene (polyolefins),1–4 polystyrene,5 poly-

amide,6 polycarbonate,7 and elastomers (rubbers and
thermoplastic elastomers)8–10 filled mainly with
glass,1–7 artificial,5,6,9 and natural4,5,8,10 fibers. The
rheological behavior of polymer–fiber systems was the
subject of several review works.11–13 The viscosity
measurements performed for many polymer–fiber
systems lead to the conclusion that the fiber addition
increases, as a rule, the viscosity of the system that
becomes additionally more non-Newtonian, i.e., its
viscosity is more dependent on the shear rate in com-
parison with the virgin polymer. The fiber addition
also changes significantly the elastic properties of the
melt. One of the most interesting phenomena is a rise
of the first normal stress difference accompanied by a
lowering of the die swell.14 The behavior of fiber sus-
pensions was also analyzed theoretically by means of
the continuum mechanics methods.15

The aim of this paper is the formulation and exper-
imental verification of the free volume theory based
analytical description of the effects of filler addition
and temperature changes on the viscosity of fiber sus-
pensions in non-Newtonian liquids. The generaliza-
tion of the description for the systems with yield stress
is also discussed.

THEORETICAL CONSIDERATIONS

The effect of fiber filler on the viscosity of the poly-
mer–filler compositions can be determined on the ba-
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sis of the free volume theory. According to the theory,
the viscosity of any system depends on the relative
content of the occupied volume Vo (total volume of all
molecules in the system) and of the free volume Vf
(volume of all empty spaces between molecules). The
viscosity of the system, � (for any volumetric filler
content �, temperature T, and shear rate �), describes
the Doolittle equation:

ln� � A � B
Vo

Vf
� A � � (1a)

where A and B are material constants (independent of
�, T, �).

If the free and occupied volumes are related to the
mass unit of material, their sum is the specific volume
V.

Vo � Vf � V (1b)

The general assumption with respect to the filled
systems is that the Doolittle equation (1a) applies both
to the pure and the filled polymer and the constants A
and B are determined by the continuous phase (poly-
mer) only. Based on this assumption the viscosity
changes of the composition, which are due to the filler
content, temperature, and shear rate variations, can be
corelated to a composition without filler (� � 0) at
some known temperature (T � To) and in the Newto-
nian flow region (� � N) in the following way:

ln ���,T,�� � ln ���,T,0� � ���,T,�� � ���,T,0�

� ���,To,0� �
���,T,0�

���,To,0�
� ����,T,��

���,T,0�
� 1� (2a)

ln ���,T,0� � ln ���,To,0� � ���,T,0� � ���,To,0�

� ���,To,0� � � ���,T,0�

���,To,0�
� 1� (2b)

ln �(�,To,0) � ln ��N,To,0� � ���,To,0� � ��N,To,0�.

(2c)

Eliminating the quantities �(�,T,0), �(�,T,�) and
�(�,To,0) from Eq. (2a), (2b), and (2c) and omitting
logarithms one obtains the relationship

���,T,��

�o
� ����,To,0�

�o
��	

exp[�o(�	�1)], (3)

where for convenience the following abbreviations are
introduced:

� �
���,T,0�

���,To,0) (4a)

	 �
���,T,��

���,T,0�
(4b)

�o � ��N,To,0) (4c)

�o � ��N,To,0). (4d)

The quantities �o and �o in Eqs. (4c) and (4d) relate
to the flow of the pure polymer at the temperature To
in the Newtonian flow region N.

Assuming the linear temperature changes of occu-
pied and free volumes it can be shown that the
Doolittle equation is equivalent to the Vogel–Tamman
equation, i.e., the parameter � for any value of the
shear rate can be expressed as16

� �
D

T � Tr
, (5)

where D and Tr are material parameters.
From the point of view of the free volume theory the

parameter Tr in Eq. (5) determines the hypothetical
temperature at which the free volume of the system
disappears, i.e., the viscosity becomes infinite. It is
known that the Vogel–Tamman equation describes
quantitatively the viscosity of many systems in rela-
tively wide temperature intervals. The specific case of
the Vogel equation corresponding to Tr � 0 and D
� E/R, where E is the flow activation energy and R
the gas constant, is the Arrhenius equation. The as-
sumption Tr � 0 means that the free volume of any
system vanishes only at the absolute zero. This some-
what unrealistic assumption (especially for very large
polymer molecules) means that the Arrhenius equa-
tion is able to represent the temperature dependence
of the viscosity for the majority of polymeric systems
only in relatively narrow temperature intervals. How-
ever, it is much more frequently applied than the
Vogel equation, because it requires the knowledge of
only one material parameter with strictly defined
physical meaning, i.e., the flow activation energy E.

The effect of the shear rate on the changes of the
parameter � manifests itself mainly by the dependence
of the parameter D (or the activation energy E) on
shear rate. In such a case Eq. (5) makes possible a
simple definition of the constants � and �o in Eq. (3):

� �
To � Tr

T � Tr
(6)

�o �
Do

To � Tr
, (7)

where Do is the value of D in the Newtonian flow
region.

1402 STELLER



Parameter 	 in Eq. (3) defined by Eq. (4b) can be
determined taking into account some additional as-
sumptions:

• The addition to the polymer of rigid filler (pow-
ders or short fibers) causes an increase in the total
occupied volume of the system without any
change in the total free volume;

• The occupied volume of a multicomponent sys-
tem is an additive quantity;

• The shear rate variations do not significantly af-
fect the occupied volume;

• The volume content of the filler is small enough to
evoke no significant hydrodynamic and steric ef-
fects during the flow.

Based on the above assumptions and using Defini-
tion (1a) of parameter � and Formula (4b) one obtains

	 �
xpVop � xwVw

xpVfp



Vfp

Vop
� 1 �

xwVw

xpVop

� 1 � �
xwVw

xpVp
o � 1 �

��

1 � �
, (8)

where xp, xw � weight fractions of polymer and filler;
Vw � specific volume of filler; Vop, Vfp � occupied
and free volumes of polymer; Vp

o � specific volume of
polymer at (quasi)static conditions, i.e., without shear-
ing or in the Newtonian flow region.

The volume fraction of fibers at static conditions �
(�p � 1 � �) is defined by

� �
xwVw

xwVw � xpVp
o . (9)

Parameter � in Eq. (8) results from the assumption that
no significant effect of the shear rate on the occupied
volume exists. This follows from the fact that the
occupied volume is determined by very strong atomic
forces, while the free volume is mainly affected by
considerably weaker intermolecular forces. This
makes it possible to express the occupied volume by
means of the quantities, which are valid for static
conditions using Eq. (1a) and (1b):

Vop � Vp
o

�o

B � �o
� Vp

o
1
�

. (10)

Equations (8) and (10) are principally valid only for
“ideal fillers,” which have very small dimensions and
do not interact with polymer molecules, i.e., which
cause neither steric nor hydrodynamic effects. Allow-
ing for steric and hydrodynamic effects that may
change the free and occupied volumes, a more general
definition of 	 can be obtained,17

	 � 1 �
�o

� 1[�]�

1 �
�

�o

, (11)

where [�] can be treated as the limiting viscosity for
the system and �o is a material constant.

Equation (11) is probably more appropriate for very
short fibers and powder fillers. Theoretical studies of
the viscosity of systems with (infinitely) long paralle
oriented fibers suggest the value �o � 1 in Eq. (11).13

Such a form of Eq. (11) corresponds in turn with Eq.
(8) with the parameter � that is a material constant
accounting for the steric and hydrodynamic effects
mentioned above and hence is not necessarily defined
by Expression (10).

The dependence of the apparent viscosity of un-
filled polymer on the shear rate can be determined
based on one of the known equations, e.g., power law,
the Cross equation, or the Carreau equation.18 The
most interesting result within the whole shear rate
interval is reached with the use of the Carreau equa-
tion,

���,To,0� �
�o

�1 � ����2� 1�n
2

, (12)

where � and n are material constants.
Substituting Eq. (12) into Eq. (3) and taking Expres-

sions (6–11) into account it is easy to show that the
viscosity of a filled polymer melt as a function of the
filler volume fraction and of the shear rate can be
written as

���,T,�� �
�*o

�1 � ����2� 1�n*
2

, (13)

where

�*o � �o � exp� Do

To � Tr
�1 �

��

1 � ��To � Tr

T � Tr
�1� (13a)

n* � 1 � �1 � n��1 �
��

1 � ��To � Tr

T � Tr
. (13b)

Equation (13) is also the Carreau equation but the
values of the Newtonian viscosity and of the expo-
nent are changed in comparison with the unfilled
polymer. It follows from Eqs. (13a) and (13b) that
the filler addition to polymer increases the Newto-
nian viscosity and decreases the exponent of the
system. Consequently, the viscosity of composition
(at a constant shear rate) rises with growing filler
content. Simultaneously, the behavior of the filled
system becomes more non-Newtonian in compari-
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son with the unfilled polymer because the exponent
diminishes with increasing filler concentration. On
other hand the temperature increase (at a constant
filler content) evokes the exactly opposite effect, i.e.,
it lowers the viscosity and arises the exponent. For
sufficiently high shear rates the summand “�1” in
the denominator of Eq. (12) or (13) can be neglected.
It leads to the equation of the power law type hav-
ing the same exponent (n or n*) as the correspond-
ing Carreau equation.

Existing experimental data suggest that this descrip-
tion can be applied probably for the majority of poly-
mer melts containing short fibers and powder fillers.
However, it should be noted that such systems (espe-
cially with powders) frequently possess a distinct
yield stress value, p, resulting from interactions be-
tween filler particles, which is also a function of filler
content and temperature.13 In this case the viscosity
equation can be written as

�p��,T,�� �
p�T,��

�
� ���,T,��, (14)

where the function �(�,T,�) is defined by Eq. (13).
Unfortunately, the yield stress as a function of the

temperature and filler content cannot be probably de-
termined using the assumptions of the classical free
volume theory, i.e., neglecting the particle–particle in-

teractions, which at suitably low stress level preclude
the deformation of the system. However, using other
flow models, e.g., the cell theory,13 the definition of
p(T,�) is generally possible.

EXPERIMENTAL

Four kinds of compositions based on commercial low-
density polyethylene (Malen E) and compacted ex-
pandable polystyrene waste filled with cotton, flax,
and hemp short fibers were prepared. All composi-
tions (LDPE–cotton, LDPE–flax, PS–flax, PS–hemp)
containing fibers in the amount of 0–30 wt % were
gained by melt mixing with the use of two-roll-mill at
temperatures of 433 K for LDPE and 453 K for PS
during 7 min. To improve the homogeneity of the
blends a small amount of a compatibilizer was added
into the melt during blending. Both polymers without
fiber addition were prepared in the same manner. The
obtained systems were ground and in this form used
for viscosity measurements by means of a conven-
tional capillary viscometer. The measurements were
carried out at three temperatures for every system. All
compositions and measurement temperatures are pre-
sented in Tables 1 and 2, which are discussed in the
next section.

TABLE 1
Power Law Constants for Compositions of Polyethylene with Cotton and Flax

Composition
Fiber

content (%)

423 K 438 K 453 K

K [Pas � sn] n K [Pas � sn] n K [Pas � sn] n

Polyethylene–cotton 0 17,656 0.507 11,445 0.544 8,297 0.584
10 29,563 0.460 17,718 0.495 14,952 0.525
20 39,939 0.417 28,315 0.442 18,715 0.485
30 68,809 0.356 54,102 0.378 31,792 0.427

Polyethylene–flax 0 17,656 0.507 11,445 0.544 8,297 0.584
10 26,774 0.469 18,704 0.486 12,267 0.556
20 41,200 0.400 31,563 0.419 19,769 0.478
30 68,738 0.326 50,177 0.366 41,869 0.387

TABLE 2
Power Law Constants for Compositions of Polystyrene with Hemp and Flax

Composition
Fiber

content (%)

443 K 463 K 483 K

K [Pa � sn] n K [Pa � sn] n K [Pa � sn] n

Polystyrene–hemp 0 28,680 0.487 11,220 0.549 2,314 0.609
10 49,240 0.402 15,010 0.466 5,823 0.523
20 91,180 0.307 33,550 0.395 9,405 0.501
30 174,900 0.248 48,230 0.344 22,610 0.463

Polystyrene–flax 0 28,680 0.487 11,220 0.549 2,212 0.609
10 45,630 0.408 15,750 0.479 3,866 0.550
20 77,440 0.343 20,790 0.440 6,535 0.526
30 100,050 0.308 25,320 0.408 9,615 0.502
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RESULTS AND DISCUSSION

Figures 1–4 present typical examples of the flow
curves obtained in the measurements. Independently
of the system and temperature, the flow curves in
double logarithmic coordinates are represented by
straight lines, i.e., the flow behavior can be adequately
described by the power law

ln � lnK � n*ln �, (15)

where  and K are the shear stress and material con-
stant, respectively.

The straight lines in all figures have generally a “fan-
shape” course resulting from a shear stress level increase
and a slope decrease with growing fiber content.

The power law constants K and n* evaluated by the
least-square method according to Eq. (15) for all com-
positions and temperatures are summarized in Table 1
and 2.

It was mentioned above that the power law behav-
ior results from the Carreau equation for high shear
rate values. Therefore, the power law constant K can
be expressed in terms of constants of the Carreau
equation, (13), in the following manner:

Figure 1 Flow curves of polyethylene–flax compositions at 423 K. Fiber content [wt %]: 1, 0; 2, 10; 3, 20; 4, 30.

Figure 2 Flow curves of polyethylene–cotton compositions at 423 K. Fiber content [wt %]: 1, 0; 2, 10; 3, 20; 4, 30.
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K � �*o � �n*�1. (16)

Substituting Expressions (13a) and (13b) into Eq. (16)
and rearranging, one obtains

ln K � � ln �o �
Do

To � Tr
�

� �ln�1�n �
Do

To � Tr
���1 �

��

1 � ��To � Tr

T � Tr
. (17)

It is evident from the data presented in Tables 1 and
2 that an increase in fiber content in a composition

lowers the power law exponent n* and arises the
proportionality constant K independently of the poly-
mer–fiber system. The temperature effect on the con-
stants K and n* is exactly inverse. Quite similar qual-
itative behavior was also observed for polypropylene
filled with glass and jute fibers.4 These observations
are in an excellent qualitative agreement with theoret-
ical predictions based on the free volume theory,
which are expressed by Eqs. (13b) and (17).

The volume fractions of fibers corresponding to
known measurement temperatures in Eqs. (13b) and
(17) should be determined according to Expression (9).

Figure 3 Flow curves of polystyrene–flax compositions at 443 K. Fiber content [wt %]: 1, 0; 2, 10; 3, 20; 4, 30.

Figure 4 Flow curves of polystyrene–hemp compositions at 443 K. Fiber content [wt %]: 1, 0; 2, 10; 3, 20; 4, 30.
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The temperature dependence of the specific volumes
of LDPE and PS are given in the literature.19 It was
found that the maximum specific volume changes re-
sulting from these data for extreme temperatures
within the measurement intervals (423–453 K for
LDPE and 443–483 K for PS) are only about 2%. There-
fore, the mean values of the specific volumes for both
polymers were assumed: VPE

o � 1.29 cm3/g and VPS
o

� 1.02 cm3/g.

The specific volumes of natural fibers used in ex-
periments, which were found in the literature, are
restricted only to room temperature.20 Taking into
account some small thermal expansion of all fibers, the
following mean values of the specific volumes for the
measurement conditions were assumed: Vcotton � 0.85
cm3/g, Vflax � 0.80 cm3/g, Vhemp � 0.75 cm3/g.

It follows from Eqs. (13b) and (17) that both n* and
lnK at constant temperature should be linearly depen-

Figure 5 Dependence of power law exponent n on fiber content for compositions of polystyrene with flax (empty symbols)
and hemp (filled symbols). Measurement temperatures [K]: 1, 443; 2, 463; 3, 483.

Figure 6 Dependence of power law constant K on fiber content for compositions of polystyrene with flax (empty symbols)
and hemp (filled symbols). Measurement temperatures [K]: 1, 443; 2, 463; 3, 483.
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dent on the quantity �/(1 � �). These theoretical
predictions are compared, for example, with experi-
mental data for the compositions of LDPE with cotton
and flax in Figs. 5 and 6. The straight lines obtained by
the least-square method correspond to compositions
containing both cotton and flax fibers at similar tem-
peratures. Despite a visible scattering of experimental
points, especially at a higher fiber content, the theo-
retically predicted linear relationship is quite well ful-
filled and practically independent of the fiber type for

all temperatures. The observed scattering of experi-
mental points is partially due to the relatively low
reproducibility of flow curve measurements, espe-
cially for systems containing a higher amount of fi-
bers. Very similar plots result also for the PS compo-
sitions with vegetable fibers.

Equations (13b) and (17) predict that both n* and
lnK should be linear functions of 1/(T � Tr) at a
constant fiber content. These relationships are shown
as examples for PS compositions with flax and hemp

Figure 7 Dependence of power law exponent n on temperature for compositions of polyethylene with flax (empty symbols)
and cotton (filled symbols). Fiber content [wt %]: 1, 0 (PE); 2, 10; 3, 20; 4, 30.

Figure 8 Dependence of power law constant K on temperature for compositions of polyethylene with flax (empty symbols)
and cotton (filled symbols). Fiber content [wt %]: 1, 0 (PE); 2, 10; 3, 20; 4, 30.
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fibers in Figs. 7 and 8. The plots were drawn using the
value of Tr � 325 K for PS (Tr � 160 K for LDPE)
according to the literature data.19

The linear relationship predicted by Eqs. (13b) and
(17) is also in this case quite well confirmed by mea-
surements. Despite some scattering of experimental
data, especially at a higher fiber content, it seems that
the fiber type does not effect significantly the rheologi-
cal behavior of the investigated systems. A very sim-
ilar picture arises also for the compositions of LDPE
with cotton and flax fibers.

CONCLUDING REMARKS

The free volume theory based description of rheologi-
cal behavior of polymer melts filled with short vege-
table fibers can explain (at least qualitatively) many
flow phenomena observed in such systems. Assuming
� � 0 in Eqs. (13a), (13b), and (17) the temperature
dependence of the viscosity of pure polymer melts can
be described. It was also demonstrated17 that similar
calculations performed for melts containing a gas ad-
dition lead to expressions, which correctly reflects the
flow properties of such systems. The gas addition,
which principally changes only the free volume of the
system (in contrast to a filler addition), results in a
viscosity decrease and a rise in the exponent, i.e., the
polymer melts containing gases become less viscous
and more Newtonian. It is also possible to take the
effects of other factors, e.g., pressure, into account. In
conclusion, the method presented above is a useful
tool that enables the theoretical prediction of viscous

properties of different multicomponent polymer sys-
tems during shear flow.
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